Chest X-ray HybridGNet Segmentation.
Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis."
Instructions:
- Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
- Click on "Segment Image".
Note: Pre-processing is not needed, it will be done automatically and removed after the segmentation.
Please check citations below.
Examples
If you use this code, please cite:
@article{gaggion2022TMI,
doi = {10.1109/tmi.2022.3224660},
url = {https://doi.org/10.1109%2Ftmi.2022.3224660},
year = 2022,
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante},
title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis},
journal = {{IEEE} Transactions on Medical Imaging}
}
This model was trained following the procedure explained on:
@misc{gaggion2022ISBI,
title={Multi-center anatomical segmentation with heterogeneous labels via landmark-based models},
author={Nicolás Gaggion and Maria Vakalopoulou and Diego H. Milone and Enzo Ferrante},
year={2022},
eprint={2211.07395},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
Example images extracted from Wikipedia, released under:
- CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg
- Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg
- Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg
- Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg
Author: Nicolás Gaggion Website: ngaggion.github.io